For: Tactical Fire Remote Sensing Advisory Committee (TFRSAC) 2011 October 27

FIRE DETECTION CONSTELLATION CONCEPT:

IRIDIUM BACKCOUNTRY WILDFIRE DETECTION NETWORK

David R. Thompson (388E), William Johnson (389G), Michael Mercury (312E)

Presented by: Robert Staehle, Instruments & Science Data Systems Division (380)

Jet Propulsion Laboratory, California Institute of Technology

Copyright 2011 California Institute of Technology, except where noted. Government sponsorship acknowledged.

POC: robert.l.staehle@jpl.nasa.gov, 818 354-1176

We at JPL are not experts on wildland fires...

Looking for feedback, adjustments, comments on a concept for detection of new fires:

- 1. That have reached a threshold size ~15 x 15 m
- 2. Within the last <~30 minutes, day or night
- 3. Where there are not commonly "hot spots"
- 4. Specifying their location within ~500 m to appropriate emergency service providers within ~3 minutes of detection
- 5. Mainly not under cloud cover (e.g., Santa Anna or Chinook conditions)
- 6. With a false alarm rate <10%.

If this isn't useful, what set of performance parameters would be?

WILDFIRES ARE A GLOBAL PROBLEM

- The number and intensity of catastrophic wildfires is growing due to:
 - Droughts increasing with climate trends
 - Invasive non-native plant species
 - Development of Urban / Wildland Interfaces
- Recent fires cost Greece \$6.8B [DPA 2007], Australia \$4.4B
 [Bushfires Royal Commission 2010]

source: MODIS global fire product, MODIS rapid response system, Apr. 1-11, 2011

WILDFIRE COSTS IN THE US ARE SIGNIFICANT AND GROWING

- In 2008 there were 78,949 wildfires
 - 5.3 million acres burned
 - 16 deaths occurred
- Direct federal cost for suppression is \$3B/year [GAO 2009]
- However, the total cost of wildfires (in tax revenue, rehabilitation) is generally
 2-30x larger [WFLC Rpt, 2010]

Forest Service and Interior Wildland Fire Appropriations (source: GAO)

10/27/11 4

CALIFORNIA IS ESPECIALLY VULNERABLE

- Suppression costs exceed \$1B/year
 [LA Times 2008]
- Damages top \$1B/ year in San Diego county alone [AP 2007]
- Costs grew 150% in the last decade

Fire Hazard Zones. Source: CAL FIRE

10/27/11 5

EARLY WARNING CAN PLAY A VITAL ROLE

- Fires are almost always discovered by 911 calls
- Fires at night or in remote areas can grow undetected
- Over half of the most destructive U.S. fires, and half of most damaging LA County fires, began in isolated locations or at night without early warning [LA Cty., USFS-DOI]

"Every wildland fire that is quickly contained translates to saved lives, homes, and assets." [LA County CEO, 2010]

REQUIREMENTS FOR SATELLITE EARLY WARNING SYSTEMS

- Satellites can provide timely detection, and real time fire maps can assist suppression efforts [Kremens 2011]
- However, current fire products relying on single satellites provide inadequate coverage [2010 LA Cty. Rpt]

Satellite detection network "requirements" (Lyman et al., G7 CEOS Disaster Mgmt. Support Group, 2002)		
Repeat time	15 min	
Ultimate detection time	5 min	
Spatial resolution	250m	
False positive rate	5%	
Data transmission	real time	

Table VI - All Systems, Board Requirements

System	Early Detection	24-Hour	All-Weather	Automated
Ground-Based Visual Cameras	J	J	J	J
Ground-Based Infrared Cameras	J	J	J	J
Other Ground-Based Sensor Systems	J	J		J
Manned Aircraft				J
Unmanned Aircraft				J
Weather Satellites				J
DOD/DSP Satellites	J	J	J	J

Evaluation of existing detection options, from the LA County CEO Report

AN ALTERNATIVE SOLUTION: SATELLITE CONSTELLATIONS

 The Iridium Next network (2015) will host client payloads on up to 66 satellites

10/27/11 8

IRIDIUM SYSTEM COMPARISON

 Simulated revisit times for different system options (Blue boxes below show middle 50%)

24 sensors, 1000km swath (1 hour coverage)

System	Sensors	Swath width	Overpass interval	Spatial Resolution	Notes
Iridium A	18	500km	2.1 hours (median)	250m	Lowest cost
Iridium B	24	500km	2.1 hours	250m	Very regular overpasses
Iridium C	30	1000km	27 minutes	500m	Sub-30 minute overpass interval
GOES ABBA	1	>5000km	15-30 minutes	4000m	
MODIS MOD14	1	2330km	12-24 hours	1000m	
ASTER ETF+	1	60km	24+ hours	30m	

A 4µm CAMERA POINT DESIGN

 Extrapolation from airborne MWIR images suggests that subpixel fires can be detected – as small as 15x15 m²

Detection is straightforward and can be accomplished

with a small-scale instrument

A 4µm CAMERA POINT DESIGN

 Incorporates a high-resolution Focal Plane Array and onboard FPGA processing

DATA PROCESSING AND DOWNLINK

- Onboard processing reduces downlink requirements
- Transmit detection locations (<60KB) instead of images
- Permits ~1 image/minute, low downlink bandwidth
- No precise pointing required
 - 1. Fire detection in 4um band

- 2. FPGA processing finds landmark points [JPL/Wang 2008, JPL/ Werne 2010]
- 3. Compressed downlink includes fire pixel and landmark locations
- 4. Landmarks are matched against an image database to find false & repeat detections

OTHER APPLICATIONS

Protection of oil pipelines and other energy assets

MODIS MWIR images show the Mexico Pemex pipeline fire (28 deaths, 12/19/10)

Enforcement of biomass burning laws and treaties

GOES MWIR biomass products show subpixel fires in Western Brazil

MULTIPLE FRAME DETECTION METHOD

Step 1: Matching

Automated algorithms recognize landmark features to determine geometric correspondence between adjacent frames. This pair shows matches from the top 8 high-contrast landmarks in an overflight pair.

Step 3: Detection

Information from multiple scenes is combined in a final detection decision. This improves false-positive rates relative to single-frame detections [JPL / Thompson 2011].

FOCAL PLANE ARRAY

- First Raytheon SB450 units are under production, with availability in less than 6 months
- Extrapolation from airborne MWIR images suggests that a fire subtending a small fraction of the pixel can be detected

REGIONAL UAV OPTION

- Persistent high-altitude AUVs might offer the best of all worlds:
 - Spatial coverage over entire jurisdictional areas
 - Continuous monitoring with high temporal resolution
- Useful as a bridge application and a validation testbed for advanced image processing and spaceborne sensors

Global Observer. Source: Aerovironment

Aerovironment Global Observer			
Operating altitude	~65000 ft (>18km)		
Duration	7 days		
Propulsion	Liquid Hydrogen		
Observation Swath	12km (53-degree optics)		

SOURCES

- 1. LA Times series, "As wildfires get wilder, the costs of fighting them are untamed." By Bettina Boxall and Julie Cart, Los Angeles Times Staff Writers. First of five parts *July 27, 2008*.
- 2. Associated Press, "Wildfire Damage Estimated At Over \$1B," quoting Ron Lane, Director of emergency services in San Diego County. CBS SAN DIEGO, Oct. 25, 2007.
- 3. Report by the Western Forestry Leadership Coalition, a State and Federal government partnership. The members of the coalition include: the 23 State and Pacific Island Foresters of the West and the 7 western Regional Foresters, 3 western Research Station Directors, and Forest Products Lab Director of the USDA Forest Service. "The True Cost of Wildfire in the Western U.S." April 2010. online at http://www.wflcweb.org
- 4. U. S. General Accounting Office Study report GAO-09-444T, a testimony before the Subcommittee on Interior, Environment, and Related Agencies, Committee on Appropriations, House of Representatives, 2009.
- 5. Deutsche Presse-Agentur, "Damage from Greek fires estimated at 6.8 billion dollars (Extra)," citing Greek Finance Ministry, April 2007.
- 6. The Age, "Black Saturday cost \$4.4 billion," August 1, 2010, quoting a report by the Australian Bushfires Royal Commission. online at http://www.theage.com.au/victoria/black-saturday-cost-44-billion-20100801-11116.html
- 7. U. S. Forest Service & Department of Interior Large Wildfire Cost Review, A Report on 2007 Wildland Fires by the Independent Large Wildfire Cost Panel Chartered by the U. S. Secretary of Agriculture, 2008.
- 8. Wildland Fires: Autoinated Early Detection and Rapid All-Weather 24-Hour Response. A Report by County of Los AngelesChief Executive OfficeQuality and Productivity Commission, May 2010
- 9. CALFIRE Fire prevention services, online at http://www.fire.ca.gov/fire_prevention/
- 10. Den Boychuk, W. John Braun, Reg J. Kulperger, Zinovi L. Krougly. David A. Stanford. A stochastic forest fire growth model. *Environ Ecol Stat 2007*. DOI 10.1007/s10651-007-0079-z
- 11. T. J. Lynham, C. W. Dull, and A. Singh, "Requirements for space-based observations in fire management: a report by the Wildland Fire Hazard Team, Committee on Earth Observation Satellites (CEOS) Disaster Management Support Group (DMSG)," in IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 762-764, June 2002.
- 12. Werne, T. A; Bekker, D. L.; Pingree, P. J.; "Real-time data processing for an advanced imaging system using the Xilinx Virtex-5 FPGA." *IEEE Aerospace*, 2010.
- 13. Y. Wang, J. Ng, M. J. Garay, and M. C. Burl, "Onboard image regis- tration from invariant features," International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.
- 14. D. McKeown, J.Cocburn, J.Faulring, R.Kremens, D.Morse, H.Rhody et al., "Wildfire airborne sensor program (wasp): A new wildland fire detection and mapping system," *Remote sensing for field users. Proc. 10th Biennial USDA Forest Service Remote Sensing Applications Conference*, 2005.
- 15. Kremens, R. Personal Communication, 2011.
- 16. CIMSS Satellite blog, Univ. Wisconsin Madison, "Oil Pipeline Fire in Mexico," December 19th, 2010. http://cimss.ssec.wisc.edu/goes/blog/archives/7300.
- 17. Reuters / Stringer, image appearing in Reuters article by Patrick Rucker and Armando Tovar, "Oil blast causes inferno in Mexican town, 28 dead." Reuters, 19 Dec. 2010,
- 18. NY Daily News Aug. 23, 2009. Reproduction of image from Associated Press, (Bicanski/Getty).